
 51

Delay Controlled Elephant Flow Rerouting in Software Defined Network

Hnin Thiri Zaw, Aung Htein Maw

University of Computer Studies, Yangon, University of Information Technology

h.thirizawucsy@ucsy.edu.mm, ahmaw@uit.edu.mm

Abstract
As the network has limited resources, the traditional

network with a single path routing mechanism will make

the inefficient network resource utilization. Because the

competitive utilization along the single path causes the

performance degradation of traffic flows. Multipath

routing is a good approach for inefficient resource

utilization problem. It distributes the traffic load among

parallel paths instead of single path. Moreover, the

long flows which called elephant flows are needed to

detect and handle in order to avoid traffic congestion.

This paper proposes an effective solution by combining

the elephant flow detection and rerouting based on end-

to-end delays of available paths in Software Defined

Network (SDN). The proposed method is implemented

by using ONOS controller and Mininet emulator. The

experimental results prove that 16.57%~78.03%

throughput improvement and 26.18%~171.68% flow

completion time (FCT) reduction for multiple elephant

flows compared with the single path routing approach.

Keywords- Multipath, Elephant flow, Software

defined network, SDN

1. Introduction

As the growth of deployment in online end-user

applications such as VoIP, online gaming, video

conferencing and so on, maintaining high throughput

and low latency issues is important challenges for

networks. To be efficient network resource utilization

and fulfilled with quality of service (QoS) requirements,

more and more traffic engineering (TE) applications are

needed to innovate for better route decisions by

measuring and controlling traffic flows. Reactive

forwarding application of ONOS controller is a default

single path application to make forwarding decisions

whenever a new flow arrives at the switch [2]. The main

process is that the switch sends a copy of the first packet

header from new flow to the controller and then the

controller installs forwarding rule to the switch. The

major drawback of the reactive forwarding method is

that it makes route decisions without awareness traffic

condition and QoS parameters (such as bandwidth,

delay, packet loss and jitter), resulting in throughput

degradation. The aim of the proposed method is to solve

the drawback of the reactive forwarding method. This

paper presents the overview of the proposed architecture

to generate better route decision by considering traffic

conditions (measuring elephant flows) and end-to-end

delays of paths. The proposed method includes three

main folds: (1) monitoring and detecting the elephant

flow periodically (2) measuring end-to-end delays of

available paths between source and destination where

large flow happens and (3) rerouting the elephant flow

to the least delay path. The proposed method

implementation uses ONOS [10] controller and Mininet

[8] emulated. sFlow [7] analyzer is used to monitor

elephant flow by using packet sampling technology.

The single path routing is used for mice flows by

default. Once the elephant flow is detected from sFlow

analyzer, end-to-end delays of all paths between source

and destination nodes are measured and elephant flow is

shifted to the least delay path.

The remainder of this paper is organized as follows.

Section 2 presents related work overview. Section 3

gives the explanation about the overall architecture of

the proposed method with three main tasks: large flow

detection, end-to-end delay estimation and rerouting

elephant flow. In Section 4, performance evaluation

describes experiment scenario with throughput and

packet loss. Section 5 presents the conclusion of this

paper.

2. Related Work

The existing traffic rerouting models implement

different strategies in the multipath forwarding

mechanism. The authors in [3] propose the routing

algorithm splits the elephant traffic into mice and

distributes them across multiple paths based on source

routing (label based forwarding) with round-robin

manner. The limitation of their method is that it requires

overhead bytes to implement policy in packet header

increases linearly with path length. The difference is that

their approach uses round-robin to split traffic load and

our method is based on estimated delays of each path.

Hedera [4] is a flow scheduling scheme to solve the

hash collision problem of Equal Cost Multipathing

(ECMP). It reduces large flow completion time (FCT)

caused by network congestion and utilizes the path

diversity of data center network topologies. The

difference is that Hedera uses per flow statistics for

large flow detection, which has poor scalability and our

user
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

user
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

user
Text Box
icait2017@uit.edu.mm

 52

method uses packet sampling. DiffFlow [5] differentiate

short flow and long flow by using a packet sampling

method. It applies ECMP to short flows and Random

Packet Spraying (RPS) method to long flows. Their

method causes packet reordering problem while

transferring each packet to random egress ports because

of different packet delivery time of available paths

between source and destination. Our proposed method

can avoid reordering problem since it is flow-based

rerouting. Another work of traffic rerouting in [6]

monitors congested path by collecting port statistics of

each switch by using OpenFlow protocol. When

congestion occurs, it computes the least loaded path and

reroutes some traffic flows from the congested path.

TinyFlow [9] presents large flow detection and random

rerouting method. Once an elephant is identified, the

edge switch adds a new rule to the flow table and

collects byte count statistics periodically. When the byte

count exceeds a limit, the switch picks an alternate

egress port out of the equivalent cost paths randomly for

elephant, reinstalls the new flow entry, and resets the

byte count. The drawback of TinyFlow is the elephant

flow collision problem at the random egress ports at

aggregate switches, resulting in poor bandwidth

utilization.

In this paper, the proposed rerouting method is

mainly based on large flow identification and end-to-end

delay estimation. As soon as large flow is detected, the

controller computes delays of parallel multiple paths

between source and destination and reroutes the large

flow to the path with the least delay path in order to

improve throughput.

3. Overall architecture of proposed method

The overall architecture of the proposed method (see in

Figure 1) is to reroute elephant flow based on average

end-to-end delays of parallel paths between source and

destination. The sFlow real time analyzer is used for

monitoring and detecting elephant flows. In order to

access the elephant flow information from our proposed

method, the sFlow REST API is called in every 1

second. The new elephant flow event can be defined in

the proposed rerouting method by comparing the

timestamp values of elephant flow events since sFlow

REST API provides flow information with time stamp

values. According to the flow chart of Figur 1, as soon

as the elephant flow is found, firstly it finds an available

shortest path list in terms of hop counts between source

and destination nodes. Then end-to-end delay of each

path from path list is measured by sending out probe

packets from the controller. From delay measurement

module, the

Figure 1. Flow chart of proposed method

average delays of each path can be calculated. After

comparing the average end-to-end delays of available

paths, the elephant flow is shifted to the least delay path

to optimize throughput performance. For TCP traffic

flow, the least and second least delay path are selected.

In general, three main modules: monitoring and

detecting elephant flows, measuring end-to-end delays

and flow rerouting are developed for ONOS application.

3.1. Monitoring and detecting elephant flows

The proposed method uses sFlow analyzer for

elephant flow monitoring and detection. This analyzer is

a real time traffic analyzer for software-defined

networking. It makes network traffic visibility in both

physical and virtual devices (eg. Open vSwitch). sFlow

uses packet sampling technology to analyze traffic

statistics and it is based on the collector and agent

architecture (see in Figure 2). The analyzer (or) collector

receives a continuous stream of sFlow datagrams

periodically from its agents which are embedded in

network devices such as routers and switches.

Therefore, sFlow solutions consist of two components

(1) network equipments equipped with sFlow agents

which monitor network traffic and generate sFlow data,

and (2) sFlow application that receives and analyzes the

sFlow data. Then the collector analyzes the utilization

statistics of every traffic flow on all ports of devices.

sFlow agents do very little processing. They simply

package data into sFlow datagrams that are immediately

sent to the sFlow collector. Once the utilization of traffic

flow exceeds the specified threshold value, the collector

 53

converts them into metrics which are specified in keys

of

Figure 2. The Flow architecture

Figure 3. Flow definition of sFlow collector

flow definition. The output metrics are represented by

JSON format which consisting of attribute-value pairs.

According to the flow definition in Figure 3, the output

information of elephant flow includes source and

destination MAC addresses, IP addresses, TCP port

numbers and names associated with the ports of a link.

The elephant flow events of sFlow collector are queried

by the proposed rerouting method via calling REST

API: /events/json which is used to filter the threshold

exceed events. Here the REST API calling interval is set

from delay based rerouting application to sFlow

analyzer is 1 second (less than 1 second affects the

accuracy of delay estimation).

3.2. Measuring end-to-end delay

 In delay measurement, three probe packets are

needed to send for one path. Probe packet includes two

parts (see in Figure 4): header and payload. The header

field includes faked source/ destination MAC addresses

and Ethernet type value (0x5577). The payload field

includes a time stamp (sent time) value instead of

traditional packet encapsulation. According to Figure 5,

let’s assume to find end-to-end delay between source S1

and destination S2. Firstly, the flow entries are

needed to install to each device along the path

proactively before sending the first probe.

 The matching fields of flow entries are

source/destination MAC addresses and Ethernet Type.

The action output ports for flow entries are based on

links of the path. For example, the action output port for

S1 is 2 (source port of link) and the output port for S2 is

default controller port c0 because S2 is the last device

and there is no next link in the path. Table 1 and Table 2

show the flow entries for S1 and S2. Here, faked source

MAC and destination MAC are assumed as

11:11:11:11:11:11 and 22:22:22:22:22:22 respectively.

Figure 4. Frame format of probe

Figure 5. Delay measurement architecture

Table 1. Flow entry for S1

Source MAC Destination

MAC

EtherType Acti

on
11:11:11:11:11:11 22:22:22:22:22:22 0x5577 Port 2

Table 2. Flow entry for S2

Source MAC Destination

MAC

EtherType Acti

on
11:11:11:11:11:11 22:22:22:22:22:22 0x5577 C0

 After flow entries installation, the first probe is sent

through source switch to the destination switch along

the path and back to the controller. When the first probe

is received back, the controller records the packet arrival

time Tarrival. Then the header information and payload

are extracted to get packet sent time Tsent. From the first

probe, the total delay time Ttotal (including Tarrival and

Tsent) can be learned. After the first probe, the next two

probe packets are also generated from the controller to

source switch S1 and destination switch S2

respectively like the first probe. From these two probes,

the two round-trip-time between the controller and

switches (RTTS1 and RTTS2) can be found. It can be

summarized as follow:

• 1st probe packet: measure Ttotal (Tarrivl-Tsent),

 54

• 2nd probe packet: measure RTTS1, and

• 3rd probe packet: measure RTTS2.

Therefore, the equation for end-to-end delay Tend-to-end

cost can be derived following:

 Since the delay estimation method is based on end-

to-end delay, the half round-trip-time is assumed as the

one-way delay in the calculation.

3.3. Rerouting flows

 After delay estimation of available paths between

source and destination where large flow occurs, the least

delay path is selected and new flow entries are injected

to respective devices through this path by using

FlowRuleService which is provided from ONOS

controller. For TCP traffic flow, the least delay path and

second least delay path are chosen to optimize TCP

throughput. The traffic selection fields of each flow

entry address, destination MAC address, and TCP ports.

When the traffic flow does not exceed the threshold, the

route decision and flow entries are made by using the

single path routing method. After utilization exceeds,

the route decision and new flow entries are made by

delay based elephant flow management. The old entries

which are injected from single path mechanism will be

removed automatically after 10 seconds, which is

identified in idle-timeout. The idle-timeout is A flow

table entry is removed if no packet matches the rule

within a certain amount of time.

4. Performance evaluation

 We evaluate the proposed delay aware rerouting

method using emulated testbed as shown in Figure 6.

Two laptop PCs are used for evaluating the performance

results. The first PC (i.e., Core i5-5200U CPU @

2.20GHZ with RAM 4GB, Ubuntu 14.04 on Oracle VM

VirtualBox) serves as ONOS controller. The second

Laptop PC (i.e., Core i5-5200U CPU @ 2.20GHZ with

RAM 4GB, Ubuntu 14.04) serves as mininet emulator

and sFlow-rt collector.

4.1. Testbed Emulation

 The network topology as shown in Figure 6 is

created by using Mininet emulator (version 2.2.1) which

can create the virtual network and provide hundreds and

even thousands of virtual hosts. The topology is inspired

by leaf-sine topology which is one of modern data

center architectures. In leaf-spine topology, all leaf

switches form access layer and meshed to range of spine

switches. ONOS controller (version 1.8) is used among

other kinds

Figure 6. Emulated leaf-spine topology

of SDN controllers because of its performance, high-

level abstractions and API. ONOS is distributed system

which is designed for scalability and high availability.

Iperf [12] tool is also used to generate TCP traffic and

evaluate throughput and flow completion time (FCT).

The FCT of a flow is the time difference between the

time when the first packet of a flow leaves the source

and the time when the last packet of the same flow

arrives at the destination [5].

4.2. Parameter settings and evaluation results

 Experimental scenarios are based on the two

different parameter settings for the testbed topology (see

in Figure 6). The proposed method is evaluated by

generating four different numbers of TCP elephant

flows to stress the network as shown in Table 5. In the

first settings, the up-link speed is 10 Mbps and the

down-link speed is 60 Mbps. The window size (or)

socket buffer size at the receiver is 65535 bytes and

sender is used default window size. The threshold value

of elephant flow is greater than (or) equal 1 Mbps and

packet sampling rate is 1 in 10 packets. In the second

settings, the up-link speed is 2 Mbps and the down-link

speed is 12 Mbps. The window size (or) socket buffer

size at the receiver is the same as first parameter setting.

The threshold value of elephant flow is greater than (or)

equal 0.2 Mbps and packet sampling rate is 1 in 2

packets. In both parameter settings, the amount of data

transfer for Iperf testing is 150 MB. There are four paths

(P1, P2, P3, P4) between every source and destination in

Figure 5. Different delays are used to test in both

settings. Table 3 and Table 4 show the summarized

parameter settings in details.

Table 3. Parameter setting I

Parameter

Value

Link speed Up:10 Mbps, Down:60 Mbps

Threshold 1 Mbps

Sampling
rate

1 in 10

Window size 65535 Bytes

Latency P1, P2, P3, P4 :[20, 50, 80, 110] ms

(1)

 55

Table 4. Parameter setting II

Parameter

Value

Link speed Up:2 Mbps, Down:12 Mbps

Threshold 0.2 Mbps

Sampling
rate

1 in 2

Window size 65535 Bytes

Latency P1,P2,P3,P4:[2.78,20.2,24.6,6.8] ms

Table 5. Multiple elephant flow information

Number of
flows

Source Host→Destination Host

1 H8→H1

2 H3→H1, H4→H2

4 H3→H1, H4→H2, H5→H1, H6→H2

6 H3→H1, H4→H2, H5→H1, H6→H2,
H7→H5, H8→H6

8 H5→H1, H5→H3, H6→H2, H6→H4,
H7→H1, H7→H3, H8→H3, H8→H4

10 H3→H1, H4→H2, H5→H1, H5→H3,
H6→H2, H6→H4, H7→H1,H7→H3,
H8→H3, H8→H4

12 H1→H3, H2→H4, H3→H1, H4→H2,
H5→H1, H5→H3, H6→H2, H6→H4,
H7→H1,H7→H3, H8→H3, H8→H4

 The results of the proposed method are compared

with the single path method. In Figure 7, the delay based

rerouting method has the throughput improvement

16.57%~78.03%. This is because the proposed method

reroutes the elephant flows to the least delay path while

the single path method only uses the shortest paths for

all traffic flows. In Figure 9, although the throughput

improvement is 49.84%~79.03% for 2 and above 6 TCP

elephant flows, the proposed method has the same result

with the single path method for 1 and 4 TCP flows. The

same results occur when the single path routing chooses

the least delay path. In Figure 8 and 10, the results

show that 26.18%~171.68% FCT reduction of proposed

method. Therefore, it has been studied that the more

elephant traffic flows in the network, the proposed

scheme still outperforms evidently. According to

throughput improvement, the proposed method is more

outperformed when the link speed is 2 Mbps. The

proposed rerouting scheme can reduce the performance

degradation problem (in terms of throughput) of single

path routing, i.e. poor bandwidth utilization without

awareness of path condition and traffic types. The delay

based traffic rerouting method is presented in software-

defined network by emulating layer 2 topology. The

proposed method leverages an SDN infrastructure to

support delay estimation and traffic rerouting. Unlike

the traditional singe path routing method, the proposed

method includes: differentiation elephant flows,

estimation end-to-end delay of available

Figure 7. Throughput results for parameter setting I

Figure 8. FCT results for parameter setting I

Figure 9. Throughput results for parameter setting

II

Figure 10. Throughput results for parameter setting

II

 56

paths between specified source and destination and

reroute the elephant flows to the least delay path. The
objective of proposed method is to improve network

performance by measuring and managing traffic

dynamically. The experimental results show throughput

and FCT between the single path routing and delay

based rerouting method as shown in Figure 7, 8, 9 and

10. The delay based rerouting scheme effectively uses

least delay paths with the available bandwidth to avoid

the congestion link. Hence, it has been obtained the

better throughput and FCT after using the path delay

based rerouting method.

5. Conclusion

The proposed delay based elephant flow rerouting

method is implemented by using OpenFlow version 1.0

and it works on layer 2. Consideration for available

bandwidth utilization is beyond the scope of paper and

the future work will be considered it. The difference

from traditional single path routing method is that the

proposed method differentiates types of flows and

reroute the elephant flow to least delay path in order to

optimize throughput. According to experimental results,

the proposed method improves the throughput results

16.57%~78.03% and 26.18%~171.68% FCT reduction
as compared with the single path routing approach.

6. References

[1] O. M. E. Committee, “Software-defined networking: The

new norm for networks”, ONF White Paper, 2012, pp. 2--6.

[2] A. Bianco, P. Giaccone, , R. Mashayekhi, M. Ullio, V.

Vercellone, “Scalability of ONOS reactive forwarding

applications in ISP networks”, Computer Communications,

2017, pp. 130--138.

[3] S. Hegde, S. G. Koolagudi, S. Bhattacharya, “Scalable

and fair forwarding of elephant and mice traffic in software

defined networks”, Computer Network, 2015, pp. 330--340.

[4] M. Al-Fares, S. Radhakrishnan , B. Raghavan, N. Huang,

A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data

Center Networks”, In NSDI, 2010, pp. 19--19.

[5] F. Carpi, A. Engelmann, A. Jukan, “DiffFlow:

Differentiating Short and Long Flows for Load Balancing in

Data Center Networks”, In Global Communications

Conference (GLOBECOM), 2016, pp. 1--6.

[6] M. Gholami, B. Akbari, “Congestion control in software

defined data center networks through flow rerouting”, In

Electrical Engineering (ICEE), 23rd Iranian Conference on,

2015, pp. 654--657.

[7] Peter Phaal, March 2013 [Online]. Available from:

http://blog.sflow.com/2013/03/ecmp-load-balancing.html

[8] B. Lantz, B. Heller, N. McKeown, “ A network in a

laptop: rapid prototyping for software-defined networks”, in

SIGCOMM, 2010, pp. 19 .

